鸡兔同笼教案总结 数学广角鸡兔同笼教案

网络整理 分享 时间: 收藏本文

鸡兔同笼教案总结 数学广角鸡兔同笼教案

总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。写总结的时候需要注意什么呢?有哪些格式需要注意呢?那么下面我就给大家讲一讲总结怎么写才比较好,我们一起来看一看吧。

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇一

地点:大会议室

主备人:崔xx

参加人员:六年级全体数学教师

教研内容:“鸡兔同笼”问题

1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。

2.结合图解法理解假设的方法解决鸡兔同笼问题。

3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

教学重点:能用列表法和画图法解决相关的实际问题。

教学难点:结合图解法理解假设的方法解决鸡兔同笼问题。

重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。

模式方法:提出问题――列举尝试――观察发现――讨论交流――寻找解法。

作业设计:有浅入深“鸡兔同笼”的基本题型多练。

1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。

2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。

3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。

4、列方程解时要借助实例,体会设x的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为x的道理,方法是设出一部分,根据总数列出方程(易列难解)

全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇二

1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。

3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。

尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

在解决问题的过程中,培养学生的逻辑思维能力。

教法:分析、引导

学法:自主探究

多媒体。

一、定向导学:2分钟

1、师:同学们,你们知道吗,大约在1500年前,我国古代的数学名著《孙子算经》中,记载着一道有趣的数学题:(课件出示,题略)你们知道这道题的意思吗?

生:……(课件演示)

师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。

2、学习目标:

掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

二、自主探究:8分钟

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇三

1、知识与技能

让学生学会“列举法”,并运用“列举法”解决问题。

2、过程与方法

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

让学生养成“尝试”的数学思维与方法。

3、情感态度与价值观

利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。

了解中国数学历史,渗透数学文化的思想。

让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略――列表。

三个表格,卡片。

1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)

2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)

3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)

1、师:老师想考考你们,你们看

(师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?

师:请你赶快猜一猜吧!生:独立思考后全班交流。

(此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把

这题的数字变大一些,你能猜出鸡、兔各有多少只吗?

2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?

(1)a、让生齐读题目

b、师让生独立思考后再与同桌交流。

c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格

d、 此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)

e、 观察这个表格,你发现了什么?(指名生说)

(2) 小结:对于发现的同学及时给予表扬,你真是个善于发现的孩

子。

a、我们再来观察一下这个表格,我们从1开始假设时就有78

条腿和答案的54条腿相比,怎么样?我们能不能让列举的次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)

b、根据生的回答,师板书:

c、 师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给

这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)

(3) 师:还有别的列举法?

a、 学生可能会说出取中列举法,师就问让其说清楚,明白。

学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。

b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)

3、 观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)

4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,

大家有信心运用所学问题解决实际问题吗?

1、试一试

完成81页练一练第2、3题。(先独立完成再集体订正。)

2、 深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)

通过这节课的学习,你学会了什么?(先请生说,师再总结。)

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇四

1、了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探索,合作交流,培养学生的合作意识和逻辑推理能力,体会解题策略的多样性,渗透化繁为简的思想。

3、感受古代数学问题的趣味性,提高学习数学的兴趣。

理解掌握用不同的方法解决问题的不同思路和方法。

用不同的方法解决实际问题。

多媒体课件、学习单等。

一、创设情境、揭示课题

1、师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!请同学们带着你们的信心和热情跟老师一起有进数学广角。我们一起来学习一道我国古代非常有名的数学趣题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(ppt投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(ppt展示今意。)

2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好?

二、合作探究、学习新知

活动一:探究用猜测列表法解决“鸡兔同笼”问题。

为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1

1、师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?

生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只? 师:还有补充吗?有两个隐藏条件看谁细心发现了?。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。

2、列表法

(1)猜想

要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)

(2)验证:

到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。

现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。

(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。观察这个表格,你找到答案了吗?答案是怎样的。

活动二:探究用假设法解决“鸡兔同笼”问题。

师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。

设全都是鸡,每只鸡有两只脚 2×8=16(条)8只鸡共长几条脚? 26-16=10(条)表示什么?所有兔子少的脚 4-2=2(条)2表示什么?每只兔子少的脚

10÷2=5(只)兔表示10条脚,每只鸡上添2只脚变成兔子,所以共有5只鸡变成了兔子,因此兔子有5只8-5=3(只)鸡表示总数减兔数等于鸡数

可能还有些同学有点迷糊,我们用画图法直观理解一下。

(1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。

(2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。

(3)最后剩下的3只就是鸡。

现在大家清楚了吗?在引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们

的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。这种方法好吗?给这种方法起个名字,叫什么好呢?假设法。

②:如果假设全是兔,你们会解吗?好这个方法就留给你们课后完成。

小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)

发散思考、加深理解:

现在我们能用上面的方法解决古人流传下来的问题了吗? 出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只? 学生独立自主完成

小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。

三、巩固练习

课本105页“做一做”的1、2题。

四、课堂总结

师:通过今天的学习,你有哪些收获?

五、作业布置

课本106页练习二十四第一题

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇五

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。

3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

(一)设计意图:

通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

(二)设计思路:

遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。

在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。

教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

1、提出问题

师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

问:这段话是什么意思?(生试说)

师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

(板书课题:鸡兔同笼问题)

2、解决问题

师:说明为了研究方便,我们不妨先将题目的条件做一个简化。

(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)

师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

学生初步交流,教师提炼:可以用画图的'方法、可以用列表法、可以用假设法、还可以用方程的方法。

师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)

小组活动充分后进入小组汇报、集体交流阶段。

师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

学生汇报探究的方法和结论:

1:画图法:(学生展示画图方法及步骤)

①先画8个头。

②每个头下画上两条腿。

数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。

③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。

每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。

2.列表法:

(展示学生所列表格)

学生说明列表的方法及步骤:

学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

鸡 8 7 6 5 4 3 2 1

兔 0 1 2 3 4 5 6 7

脚 16 18 20 22 24 26

鸡 8 7 6 5 4 3 2 1

兔 0 1 2 3 4 5 6 7

脚 16 18 20 22 24 26

学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。

鸡 8 6 4 3

兔 0 2 4 5

脚 16 20 24 26

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇六

1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

能用不同的策略解决相关的实际问题。

教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。

教具:多媒体课件

一、联系现实,激趣导入

1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

师:接下来的歌谣不完整,谁能把它填完整呢?

两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…

师:你是怎么知道的?

生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

[设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。

二、自主探索,尝试解决

1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

(1)、指名读题

(2)、理解题意:

师:20个头表示什么?

生:20个头表示鸡与兔的总头数。

师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

(3)、同桌说一说:

(4)、学生汇报,教师填表

生1:我猜鸡有3只,兔子有17只。

生2:我猜鸡有5只,兔子有15只。

生3:我猜鸡有16只,兔子有4只。

……

师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?

生:鸡兔的总只数没有变。

强调鸡兔的总只数不变

[设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

2、自主探究

出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

(1)、指名读题

(2)、引导观察:

师:这两道题有什么不同呢?

生:第2个问题多了一个条件“54条腿”

(3)、理解题意:

师:20个头,54条腿是什么意思呢?

生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

①、每个小组老师都有一份材料

②、小组长组织小组成员讨论,小组长并做好记录

3、反馈交流,教师适当引导

(1)、逐一列表法:

生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

(2)、跳跃列表法

生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

(3)、折中列表法

生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

像同学们刚才的这几种解法,我们把它称为列表法。

4、画图法(板书:画图法)

师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

5、归纳算法

解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

三、巩固练习

生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

(1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

(2)、学生独立解决,全班交流。

[设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]

四、全课

通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

五、拓展延伸

书p81“你知道吗?”

师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。

教学反思:

反思本次教学活动,我发现了成功与遗憾共存。

成功之处在于:

1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。

2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。

3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。

遗憾之处在于:

1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。

2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇七

1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

会用假设法和方程法解答“鸡兔同笼”问题。

明白用假设法解决“鸡兔同笼”问题的算理。

多媒体课件。

一、创设情境,引入新课。

1、引入:

同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

为便于研究,我们先从简单的生活问题入手,请看下面问题。

●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

二、自主学习、小组探究

对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

温馨提示:

①用列举法怎样解决问题?

②你能用画图的方法解答吗?

③如果把这些票都看成学生票或都看成成人票如何解答?

④回顾列方程解决问题的经验,怎样用方程解决问题?

学生自己根据提示用自己喜欢的方法解决问题。

先把自己的想法在小组内说一说,再共同协商解决。

教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

三、汇报交流,评价质疑

对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

1.列举法。

可以有目的的先展示这种方法。(多媒体展示。)

学生票数(张)成人票数(张)钱数(元)

2525250

2426252

2327254

2228256

2129258

2030260

质疑:有50张票,是否有必要一一列举,你是如何列举的?

(引导学生通常先从总数的中间数列举。)

质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

(引导学生根据数据特点确定调整方向、调整幅度。)

师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

2.假设法

(1)假设全是成人票:

①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

(学生试着列算式,请两个学生到黑板上去板演。)

预设板演:

50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

50-20=30(张)

③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

预设回答:

假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

(2)假设全是学生票:

如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

总结方法归纳抽象出这类问题的模型。

学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

3、方程法:

除了以上两种方法,还有别的计算方法了吗?

学生汇报列方程的方法。

(1)找出相等的数量关系。

(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

元)

(2)根据等量关系列式:

设成人票有x张,则学生票有(50-x)张。

列方程为:6x+4(50-x)=260

(解略)

4.学生比较以上几种方法解题方法。

四、抽象概括,总结提升。

让学生结合自己解决问题的经验,用自己的语言进行总结。

列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

假设法:适合所有的这类问题,但比较抽象,不好理解。

方程法:适用面广,便捷,容易理解。

师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

五、巩固应用,拓展提高

1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

温馨提示:

a.先让学生认真读题,(同桌讨论)。

b.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

处理方法:

①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

②小组内交流算法。

③全班交流。

【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

3、全课小结:

回顾总结,引发思考

本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

师总结:

这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇八

鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

1、知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。

3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。

理解用假设法解决“鸡兔同笼”问题的算理。

一、以史激趣,导入新课:

同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)

二、独立探索,构建新知:

(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?

你从这道题中,找到了什么数学信息?

(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)

这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)

谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)

能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)

有了猜测的依据,还有谁想继续猜?(……)

给老师一个机会,我猜鸡是1只,那兔有几只?(19只)

怎么知道我猜得对不对?(通过计算来验证)

(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)

虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)

现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇九

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。

3、在解决问题的过程中培养学生的逻辑推理能力。

理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。

理解用假设法的算理并能运用不同的方法解决实际问题。

1、采取直观形象的方式,让学生探讨不同的方法。

2、适当把握教学要求。

一、历史激趣,导入新课

今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)

师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题)

结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

二、探究交流,尝试解决问题。

1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)

2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(出示)

3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

学生猜测,老师板书

4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

(一)、尝试列表法

为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(出示:把一只兔当成一只鸡算,就少了两条腿。)

(二)、假设法

1、假设全是鸡

8×2=16(条)(如果把兔全当成鸡一共就有8x2=16条腿)

26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)

4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)

10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)算出来后,我们还要检验算的对不对,谁愿意口头检验。

2、假设全是兔

我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(出示:把一只鸡当成一只兔算,就多了两条腿)

先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

小结:

刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇十

【知识与技能】

理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。

【过程与方法】

经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。

【情感态度价值观】

感受古代数学问题的趣味性。

【教学重点】

掌握运用列表法、假设法解决“鸡兔同笼”问题。

【教学难点】

理解掌握假设法,能运用假设法解决数学问题。

(一)引入新课

ppt呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?

引出课题――《鸡兔同笼》

(二)探索新知

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下

教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习

ppt再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解

(四)小结作业

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇十一

鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2―头数(94÷2―35=12),鸡数=头数―兔数(35―12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:

鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。

课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。

解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。

本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇十二

教科书数学六年级上册p112-115。

1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

理解假设法中各步的算理

多媒体课件

1、谈话,激情导入

师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

(2)揭示课题

(3)原题解读

师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]

1、改变原题

师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

(2) 理解题意:从题中你获得哪些信息?

让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

探索策略

2、列表尝试法

①猜一猜:笼子里可能有几只鸡?几只兔?

②说一说:他猜的对吗?要怎么知道他猜的对不对?

③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

④ 展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。

⑤ 反馈交流

a、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

b、取中或跳跃尝试,数一数试了几次?有什么秘诀?

⑥ 小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

[设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

3、假设法

①. 学生独立尝试列式解答

②. 小组讨论,说一说用假设法解答的算理

③. 汇报反馈

④. 课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。

a. 假设笼子里都是鸡,一共有几只脚?

条件告诉我们几只脚,这样就少了几只脚呢?

为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

那么几只兔看成鸡一共少了10只脚呢?

b. 假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

那么几只鸡看成兔一共多了6只脚呢?

⑤. 让学生对照课件说一说算式表示的意义

⑥. 思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

[设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的思维水平,获得了新的数学思想方法。]

4、方程解

解:设兔有 只,则鸡有 只。

也可以设:鸡为 只,则兔有 只。(略)

师:在列方程解答时碰到什么困难?该如何解决?

[设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

5、梳理小结,比较优化。

1. 选择自己喜欢的方法解决《孙子算经》中的原题。

2. 解决生活中的“鸡兔同笼”的问题。

(1)动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

3. 对比联系,建立模型。

4. 小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

5.让学生举出生活中类似的“鸡兔同笼”问题。

[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

1. 阅读并思考课本114页的“阅读材料”。

2. 完成练习二十六的1―3题。

[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇十三

时间:5分钟

方法:边看书边完成下面要求:

1、“鸡兔同笼”这四个字是什么意思?

2、书上用了种方法来解决这个问题。

3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?

生理解:

(1)鸡和兔共8只;

(2)鸡和兔共有26只脚;

(3)鸡有2只脚;

(4)兔有4只脚;

(5)兔比鸡多2只脚。(课件演示)

师:那问题是什么?

生:鸡和兔各有多少只?

3、猜一猜:

师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?

4、介绍列表法:

师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)

学生汇报整理后的表格,教师板书学生整理后的表格。(边板书,边理解填表过程)

5、观察发现,列式计算

三、合作交流:5分钟

假设全是兔,怎样解决?试一试。

四、质疑探究:5分钟

解决鸡兔同笼这类问题,有几种假设的方法?

五、小结检测:20分钟

1、小结方法:

同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。

2、检测:

a、问答:

(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?

为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)

(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)

(注:如果前面出现了折半列表,就把这个环节提前讲。)

(3)其实在我们生活当中类似于鸡兔同笼的问题有很多的,这些问题都可以用不同的方法去解决,下面请同学们用自己喜欢的方法做一些题目?

b、解决问题

(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

(2)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?

(3)新星小学”环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各几人?

作业:p106;1、2、3。

板书:

鸡兔同笼

假设全是鸡,就有脚8×2=16(只)

比实际少26―16=10(只)

一只鸡比一只兔少4―2=2(只)

兔子:10÷2=5(只)

鸡:8―5=3(只)

鸡兔同笼教案总结 数学广角鸡兔同笼教案篇十四

1、知识与技能

初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。

2、过程与方法

通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。

3、情感、态度与价值观

培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。

用画图法和列表法解决相关的实际问题。

体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

课件

(一)问题引入,揭示课题

师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”

问:这段话是什么意思?谁能说说?(生试说)

师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头。从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)

(二)主动探究、合作交流、学习新知

师:说明为了研究方便,我们先将题目的条件做一个简化。

(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?

师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。

师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

学生思考、分析、探索,接下来小组讨论、交流。

小组活动充分后进入小组汇报、集体交流阶段。

师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

学生汇报探究的方法和结论:

1、画图法:

给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。

总结:画图的方法非常便于观察、非常容易理解。

2、列表法:(展示学生所列表格)

学生说明列表的方法及步骤:

学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?

3、假设法:(随学生能否出现此种情况作为机动出示)

教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:

板书:方法一:假设8只都是鸡,那么兔有:

(26-8×2)÷(4-2)=5(只)

鸡有8-5=3(只)

同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:

板书:方法二:假设8只都是兔,那么鸡有:

(4×8-26)÷(4-2)=3(只)

兔有8-3=5(只)

小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。

现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。

(三)解决实际问题、课堂延伸

1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

看看我国古人是怎么解这个题的。

2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?

(四)课堂小结

通过今天的学习,你有哪些收获?

师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。