年高一数学必修三必修四知识点总结
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。写总结的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编整理的个人今后的总结范文,欢迎阅读分享,希望对大家有所帮助。
高一数学必修三必修四知识点总结篇一
棱锥的的性质:
(1)侧棱交于一点。侧面都是三角形
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
高一数学必修三必修四知识点总结篇二
本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:
(1)阅读并且理解题意。(关键是数据、字母的实际意义);
(2)设量建模;
(3)求解函数模型;
(4)简要回答实际问题。
常见考法:
本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。
误区提醒:
1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
【典型例题】
例1:
(1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。
(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。
例2:
某民营企业生产a,b两种产品,根据市场调查和预测,a产品的利润与投资成正比,其关系如图1,b产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将a,b两种产品的利润表示为投资的函数,并写出它们的函数关系式。
(2)该企业已筹集到10万元资金,并全部投入a,b两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。
高一数学必修三必修四知识点总结篇三
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为r.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
【函数的应用】
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一数学必修三必修四知识点总结篇四
2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:
(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;
(2)根据需要构造函数,利用函数的相关知识解决问题;
3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。
高一数学必修三必修四知识点总结篇五
棱锥的的性质:
(1)侧棱交于一点。侧面都是三角形
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
高一数学必修三必修四知识点总结篇六
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一数学必修三必修四知识点总结篇七
进入高中就必须树立正确的学习目标和远大的理想。激励自己积极思考,勇于进取,培养学习数学的兴趣,树立学好数学的信心。
有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。
进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
要注意积累复习资料。把课堂笔记,练习,单元测试,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。
省下时间,把精力花在研究精题上。最大限度地利用两大类精题:一类是涵盖了多项考点的母题,一类是同一题型中自己频率较高的错题。
数学并不难,其实就是按规律做题而已。道理很简单,因为出题的人就是按规律出题的。所以说只要掌握了规律,就不用怕了,关键就在于找规律。同一类型的题目,这次错了,总结出规律来下次就会做了。规律越来越多,就像有更多的钥匙,面对各种各样的锁,也就不怕了。别人给你总结好了,你要再总结一次,这样,它才能成为你的,我们的数学就建立在以前数学家总结的规律上。
高一数学必修三必修四知识点总结篇八
高中数学共有五本必修和选修1—1,1—2(文科),2—1,2—2,2—3(理科),主要为代数(高考占比约为50%)和几何(高考占比25—30%),其他(算法,概率统计等)。
高一上期将会学习必修1整本书(集合和函数,初等函数,方程的根等),必修四(三角函数)等。主要为函数内容的学习,主要考察学生的抽象思维。而且函数的基本概念和性质,为整个高中的代数奠定了基础。在这一阶段的学习,学生应该尽量培养自己的抽象思维,多思考。可以适当少做题,多花时间在知识概念等的复习和理解上面,弄清楚所学内容之间的逻辑联系。
高一下期将会学习必修四(向量,三角函数和差公式等),必修五(解三角形,数列,解不等式)等。这一阶段的内容,主要考察学生的推演和计算能力。可以适当多做题,多训练,提高自己计算的速度和准确性。
高二将会进入几何部分的学习。
高二上期学习必修二(立体几何,直线和圆),必修三(算法,概率统计)等。这一阶段的内容对学生的空间想象力(立体几何)和逻辑思维能力要求较高,同时也要求学生具备较高的计算水平(经过高一下的训练)。同时,这也是对学生学习数学相对比较轻松的一个学期。所以,可以在学好本学期内容的基础上,对上学期的内容多做复习,温故而知新。
高二下期主要学习选修部分(圆锥曲线,导数等)。这一学期的内容是整个高考的压轴,也是最难的内容。它对学生各方面能力的要求都很高,是学生拿高分必须要学好的部分。对于这一阶段的学习,一定要形成自己的思想,在多思考的基础上,一定要动笔!
总之,对于数学的学习,新课很重要!接触知识的第一印象,很大程度上决定了你对整个板块知识的逻辑关系的认识。只有理清楚了数学各个知识之间的逻辑联系,形成自己的一套体系,才能更快更好地学好数学。
数学是高考科目之一,故从初一开始就要认真地学习数学。进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。
其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。
总之,对高中生来说,学好数学,要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。
高一数学必修三必修四知识点总结篇九
本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。
1、函数单调性的定义
2、函数单调性的判断和证明:
(1)定义法
(2)复合函数分析法
(3)导数证明法
(4)图象法
1、函数的奇偶性和周期性的定义
2、函数的奇偶性的判定和证明方法
3、函数的周期性的判定方法
1、函数图象的作法
(1)描点法
(2)图象变换法
2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。
1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。