年公因数和公倍数的教学反思

网络整理 分享 时间: 收藏本文

年公因数和公倍数的教学反思

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

公因数和公倍数的教学反思篇一

公因数和公倍数的学习是五下教材的两个重要概念,新教材对这部分内容作了化解难点,个别击破的办法,如何教学好这节内容,我在这次的新教材教学实践中作了如下尝试。

倍数——公倍数——最大公倍数

这一单元主要是让学生在操作与交流活动中认识公倍数与最小公倍数,公因数与最大公因数,并激发学生的学习兴趣,培养学生的探究能力,因此在教学中我认为应特别注重概念间的系列反应,如倍数和因数是前面所学内容,新内容要在此基础上生根,必须复习旧知,联系生活,学习新知,围绕“公”,理解公倍数与公因数的概念,最小公倍数则通过实际生活中如第25页公交发车问题或参加游泳问题,来引发就是求最小公倍数来解决问题,最大公因数则通过长18厘米,宽12厘米的长方形来分最大的小正方形得到,教学中,我们必须注重学生对概念间的关系理解,从而形成条理化。

从而想到18的因数有哪些,12的因数有哪些,18和12的公因数即为剪下的正方形的边长,而6则是比较特别的一个最大的数,即为最大公因数,到这里实际解决了例4。

再次提问:因数是怎么求的?公因数是什么意思?最大公因数是什么意思?怎么求两个数的最大公因数。回到教材,自学教材,思考问题。 3、 有效使用教材与教辅资料,提高达成性。

什么时候阅读教材,例题等主体部分看不看?练习部分怎么用?都值得我们每节课去揣摩和研究。

学生陌生,共同探讨之后又让学生回到教材,仔细阅读教材,寻找教材重点、难点,作好标记,可以当堂又经过了初步的复习。

书后的练一练以及练习五1-5题,由浅入深,重点训练学生寻找最大公因数的方法,无需改编,原题照用,可以直接在教材上作练习,当堂巩固所学新知,结合练习适当进行拓宽与技能的强化,可以直接实现当堂清。

公因数和公倍数的教学反思篇二

1、利用情境引入新课,通过月历探索新知。学生在月历上找出4和6的倍数的日期,清楚形象的看到两个数的倍数关系。

2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。学生探索后,引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,用自己的语言梳理新知,使学生在环环相扣的.教学进程中顺理成章的理解概念,把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念,沟通二者之间的联系。

3、创设问题情境,尝试应用,方法提炼。结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。

4、巩固练习、不断刺激,不断巩固提升。先让学会用最基本的方法求两个数的最小公倍数。再用这样的知识解决生活中的排队问题,用富有生活气息的情境,激发学习兴趣,再次打通生活与数学的屏障。接着是找生日,铺墙砖,让用数学方法来解释生活现象,感受到求公因数与求公倍数的联系。

4、学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。

总之,本节课体现了这样的设计理念:将直观演示与抽象思维相结合,让学生在自主参与的基础上感悟、理解、应用、巩固。

公因数和公倍数的教学反思篇三

最小公倍数是人教版教材第88-90页的内容,是在学生掌握因数、倍数和公因数等概念的基础上进行教学的,主要是为后面学习通分进行异分母分数加减法、异分母分数比较大小做准备的,在生活实际中也存在很大作用。教材采用“找”的方法,让学生领悟两个数的最小公倍数的概念。本节课我是从以下环节教学的,感觉达到了预期效果。

在课一开始,我利用小学生争胜心强的心理特点,让学生比赛写出50以内4的倍数和6的倍数。学生写完后,让他们从写出的4的倍数和6的倍数中挑选出两数的相同倍数,并让学生尝试给4和6相同的倍数取名字,有的同学起名“4和6的同倍数“,有的取名“4和6的共倍数”,还有的取名“4和6的公共倍数”等,我表扬孩子有创意之后,在“4和6的公共倍数”的基础上给孩子统一了一下,叫做“这些相同的倍数叫做4和6的公倍数”,接着说道,4和6这两个数有公倍数,其他任何两个自然数都有公倍数,并追问,什么是两个数的公倍数,学生异口同声的回答“两个数倍数中相同数,既是一个数的倍数,也是另一个数的倍数,这样的数叫做两个数的公倍数。”看到学生已经明白公倍数的.含义,我接着说道,因为一个数的倍数的个数是无限的,没有的倍数,所以两个数的公倍数的个数也是无限多,也没有公倍数,但是有最小公倍数,4和6的最小公倍数是几呢?(12)为了让学生对公倍数和最小公倍数的概念有个确切的认识,让学生看课本109页的内容。就这样一边复习,一边谈话,巧妙无痕的揭示了本节课的概念。

通过多媒体的特殊功能,让学生集观察、思考与一体,并动手操作,体会最小公倍数学习的意义。(课件出示:)学生读题,明白题意后,便让他们四人一组用事先准备好的小长方形纸片去铺这个正方形。铺完后,都有所感悟,发现能铺完,这时问学生知道为什么能正好铺完吗?部分学生说正方形的边长正好是小长方形长的倍数,也是小长方形宽的倍数,是2和3的公倍数。接着让学生思考用这个小长方形还能铺满边长是几厘米的正方形,学生争先恐后的回答“12、18、24......,因为这些数既是2的倍数,也是3的倍数,也就是2和3的公倍数。”看到学生大都明白题意,我开始让学生猜测,可能铺满边长是9厘米、10厘米的正方形吗?为什么?孩子们都抢答说,不能,因为9和10都不是2和3的公倍数。孩子们最后总结出铺满的正方形的边长必须是两个数的公倍数,并说道所铺满的正方形的边长最小是6 厘米。正好是长和宽的最小公倍数。从而真正感受到学习最小公倍数的意义。

因为在此之前学生已经学习了找两个数的公因数的方法,接着引导学生根据找两个数的公因数的方法,大胆迁移、类推、探索出找两个数的最小公倍数的方法。从而获得能力上的发展。学生迁移出了四种找最小公倍数的方法。

4、短除法同时分解两个数,求最小公倍数,因为这种方法仅仅是把两个数分解质因数的短除式合并在了一起,所以没多做介绍,重点说了说用短除式求两个数的最小公倍数把所有除数(即公有质因数)和商(各自独有的质因数)相乘。针对每种找两个数的公因数的方法,学生边说边举例,并进行了适量的练习。

公因数和公倍数的教学反思篇四

教材之所以选择长方形纸片铺正方形的活动教学公倍数,我想是因为这一活动能吸引学生发现和提出问题,能引导学生积极地思考。当学生用同一种长方形纸片铺两个不同的正方形,面对出现的两种结果,会提出“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着正方形的边铺长方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究正方形边长和长方形长、宽之间关系的愿望。

在分析正方形的边长和长方形长、宽之间的关系,按学生的认知规律,教师设计成两个层次:第一个层次联系铺的过程与结果,从两个正方形的边长除以长方形的长、宽没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据正好铺满边长6厘米的正方形、不能正好铺满边长8厘米的正方形的经验,联想还能正好铺满边长是几厘米的正方形。通过小组合作讨论、交流知道这样的正方形有无数多个。

因为学生在四年级(下册)教材里,已经建立了倍数和因数的概念,会找10以内自然数的倍数,因此当教师一旦给学生提供交流讨论分享的平台时,学生思维的火花不断擦亮,有的联想到“能正好铺满边长是6的倍数的正方形”有的联想到“能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。”在头脑中将眼前的长方形和正方形,与“倍数”紧紧地联系起来,然后教师及时揭示公倍数的含义,把感性认识提升成理性认识,实现了数与形的完美结合。

公因数和公倍数的教学反思篇五

“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。我从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。使这些枯燥的知识变成鲜活、灵动数学,让学生在解决问题的过程中既学到了知识,又体念到了学数学的快乐。

本节课是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。

在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。本节课的意图是通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。但是,教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。本节课把“原来铺墙砖”的题目改为“找两人的`共同休息日”来建立概念。体现了新课标的要求,学生的学习内容应该是现实的、有意义的、富有挑战性的;有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;使学生感到数学就在自己身边。充分利用课堂中最有效的时间是前15钟,做好这段时间的教学,提高了学习效率。

本节课两个数的公倍数和最小公倍数的意义,通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化,渗透集合思想,培养学生的抽象概括能力这些目标展开教学。把本节课的重点应放在学生对数的概念的认识上,体现了新课标中“4—6年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数”的要求。小学生的生活实际问题的解决能力普遍较低,把运用“公倍数与最小公倍数”的知识解决简单的生活实际问题,定为本节课的难点。体现新课标中“人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能”的要求。

小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。

如何激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。

总之,本课体现了这样的设计理念:将直观演示与抽象思维相结合,让学生在自主参与的基础上感悟、理解、应用、巩固。

公因数和公倍数的教学反思篇六

《新课程标准》十分强调数学与现实生活的联系,在教学要求中增加了“使学生感受数学与现实生活的联系”。“最小公倍数”是一节概念课,与学生的生活实际看似并无多大联系,为了使学生体验到概念与生活的联系,感受到数学知识在生活中的实际应用。我们对教材内容作了适当的补充调整,将运动会的情景贯穿始终。在解决实际问题“猜一猜, 参加接力比赛的同学可能有多少人?至少有多少人?”的同时很自然的得到了“公倍数”和“最小公倍数”的概念,为后面算理的探究做好了铺垫。这样设计,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高于生活的特点。

(1)概念的构建

“公倍数”“最小公倍数”的概念,和“公约数”“最大公约数”的概念非常的相似,学生理解起来也比较容易。这部分内容我们采用迁移、引导的形式进行概念的构建。利用问题“24与3和4分别是什么关系”引导学生发现24 是3的倍数,同时也是4的倍数。利用旧知很顺利的自主构建出“公倍数”和“最小公倍数”的概念。

(2) 方法的构建

“最小公倍数”这节课的重难点就在于理解求最小公倍数的算理。在算理的突破上,我们采用了对比的手段。利用已有的分解质因数的知识有效的进行了对比。

当学生用分解质因数的方法计算出[18,30]=2×3×3×5=90 后,设计了问题: 2、3是什么?3、5是什么?两个3一样吗?明确了公有质因数和独有质因数以后,又将18和30的全部的质因数相乘和[18,30]进行对比。学生很直观的看到,公有的要选代表保证是最小的?独有的全取保证是公倍数?把两个结合起来就是最小公倍数。算理在直观的比较中一目了然。而求最小公倍数的短除的形式,学生在理解了算理的基础上,加上求最大公约数的知识经验,理解起来已然顺理成章。

接下来我们结合运动会项目设计一个题目“用自己喜欢的方法求12和28的最小公倍数。”使学生在练习中自然的对算法进行优化,自主构建出短处形式的解题方法。

在整个过程中学生利用已有的认识结构,自己动脑、动口,将直观比较与亲身体验建立起实质性的联系,进行自主构建。

数学课堂上学生在建立起概念,找到解题方法之后,必须做相应的数学练习题,才能对知识进行巩固,对算理加深理解,才能形成技能、技巧,培养思维能力。

我们设计以下两个练习题:

(1)填空

a=2×3×5

b=3×5×7

则[a,b]= (最小公倍数是多少?你是怎么找的?)

设计这道练习题的目的有两个。第一:巩固算理,突出应用算理灵活、巧妙的解决实际问题。第二:满足不同层次学生的需求。这道题除了应用算理直接用2×3×5×7=210以外,还可以将a、b的结果分别计算出来后再用短除的形式计算[a,b]。这一方法对于那些对算理理解的不是很透彻,尤其是不能灵活的应用算理的学生来说无疑是一种好方法。在我们面向全体学生的教学中很需要这种我们自认为“麻烦”的方法。

(2)两个数的最小公倍数是12,这两个数可能是( )和( )。

设计这道练习题的目的也有两个。首先,通过这道题再一次激发学生的学习兴趣,将学习热情推向一个高潮。同时引出求两个数的最小公倍数时具有互质关系、倍数关系、一般关系的三组数。其次,将求具有互质关系、倍数关系、一般关系的两个数的最大公约数的规律进行迁移,通过自主探究,总结出具有这三种关系的两个数的最小公倍数的规律。

1、自己在教学中语言还不够简练,对学生放手还不够。有些问题可以大胆放手。

2、在算理的突破上,虽然突破了难点,但问题较碎,老师还在牵着学生的手,一步一步去理解,其实,对于我们的学生完全可以通过讨论自己发现。

公因数和公倍数的教学反思篇七

教学前,我了解了学生在这节课前已有的知识背景,直接出示例题,让学生自己去尝试解答,然后汇报个性化的解题方法。在不断的交流汇报中,学生发现了有特殊关系的两个数的最小公倍数的求法。教师又让学生举实例进行验证。公因数只有1的两个数的最小公倍数是它们的乘积。有倍数关系的两个数最小公倍数是它们中的较大数。再应用这一发现进行试一试的练习。让学生经历了观察、思考、比较、反思等活动中,逐步体会到了数学知识的产生、形成与发展的过程。

在教学有特殊关系的两个数的最小公倍数时,教师让学生自己说一说每组数最小公倍数有什么不同?学生在经历求的过程后,又仔细观察,认真思考,汇报自己的想法,把被动的认知改成了主动探究。在教学求最大公因数和最小公倍数的异同时,教师出示了求3和4的最大公因数和最小公倍数的题目。让学生自己尝试后,小组讨论求两个数的最大公约数和最小公倍数的相同点和不同点。在同学之间的讨论、交流、探索中,学生发现了新知识的特点,又在不断的比较中,知道了新知识和旧知识之间的异同。就这样,在整理、归纳、交流的活动中丰富了数学活动的经验,提高了解决问题的能力,学生在这堂课中成为了学习的主人。

学生获取知识过程花的时间可能也要稍多一些,但是这一过程中,学生的学习积极性和主动性被充分地调动了起来,当他们面对那些生动有趣的实际问题时,会自觉地调动起已有的生活经验和那些“自己的”思维方式参与解决问题的过程中来,主动地借助已有的知识经验用学过的一些方法来展示自己内部的思维过程。在这一过程中,学生不仅能清楚地体会到数学的内部联系,而且能真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的`正确认识。

在学会了基本概念之后,引导学生运用列举法找几个数的公倍数和最小公倍数,在练习了完成之后,教师引导学生观察其中的规律提出猜想和假设,然后通过每个小组的验证得到规律,在这个过程中,学生不仅发现了特殊关系的两个数的最小公倍数的简便求法,更重要的是,培养了学生的能力和严谨的学习态度和初步的学习数学的方法,培养同学之间的协作精神。

在本节课的教学中,存在以下不足:

1、过渡语的使用教师进行了精心设计,但对于课堂教学没多大的激励作用,应用朴实的语言。

2、“说一说”的内容没必要让学生讨论,应让学生充分说,展示灵活的思路。

3、“议一议”的内容时间不够充分,没有让学生真正深入地讨论。

本节课的遗憾就是。没有预料到学生会对“剪成同样长短的跳绳,不能有剩余跳绳”这个句子理解出现偏差,浪费了一些时间,但在课堂上看到了学生思维火花的闪现,感受到了他们思维的碰撞,教学目标也因此而有效达成。

公因数和公倍数的教学反思篇八

例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次:第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。

反思:突出概念的内涵、外延,让学生准确理解概念。

我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括“1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。

由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。

运用数学概念,让学生探索找两个数的最大公因数的方法。

例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。

充分利用教育资源,自制课件,协助教学。

限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。

本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。

信息流广告 网络推广 周易 易经 代理招生 二手车 网络营销 招生代理 旅游攻略 非物质文化遗产 查字典 精雕图 戏曲下载 抖音代运营 易学网 互联网资讯 成语 成语故事 诗词 工商注册 注册公司 抖音带货 云南旅游网 网络游戏 代理记账 短视频运营 在线题库 国学网 知识产权 抖音运营 雕龙客 雕塑 奇石 散文 自学教程 常用文书 河北生活网 好书推荐 游戏攻略 心理测试 石家庄人才网 考研真题 汉语知识 心理咨询 手游安卓版下载 兴趣爱好 网络知识 十大品牌排行榜 商标交易 单机游戏下载 短视频代运营 宝宝起名 范文网 电商设计 免费发布信息 服装服饰 律师咨询 搜救犬 Chat GPT中文版 经典范文 优质范文 工作总结 二手车估价 实用范文 爱采购代运营 古诗词 衡水人才网 石家庄点痣 养花 名酒回收 石家庄代理记账 女士发型 搜搜作文 石家庄人才网 铜雕 词典 围棋 chatGPT 读后感 玄机派 企业服务 法律咨询 chatGPT国内版 chatGPT官网 励志名言 河北代理记账公司 文玩 朋友圈文案 语料库 游戏推荐 男士发型 高考作文 PS修图 儿童文学 买车咨询 工作计划 礼品厂 舟舟培训 IT教程 手机游戏推荐排行榜 暖通,电采暖, 女性健康 苗木供应 ps素材库 短视频培训 优秀个人博客 包装网 创业赚钱 养生 民间借贷律师 绿色软件 安卓手机游戏 手机软件下载 手机游戏下载 单机游戏大全 免费软件下载 网赚 手游下载 游戏盒子 职业培训 资格考试 成语大全 英语培训 艺术培训 少儿培训 苗木网 雕塑网 好玩的手机游戏推荐 汉语词典 中国机械网 美文欣赏 红楼梦 道德经 网站转让 鲜花 社区团购 石家庄论坛 书包网 电地暖